Y7 - Autumn - Block 1 - Step 6 - Continue non-linear sequences Answers

Question	Answer
1	a) $2,4,8,16,32$ b) $1,3,9,27,81$
2	a) $160,80,40,20,10,5$ To find the next term, half the previous term. b) $1,4,16,64,256,1024$ To find the next term, multiply the previous term by 4. c) $4,7,11,18,29,47,76,123$ To find the next term, add on the total of the previous 2 differences to the previous term. d) $4400,5400,7400,10400,14400,19400,25400$ To find the next term, add 1000 onto the previous difference, and then add this total onto the previous term. e) $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \frac{1}{128}$ To find the next term, double the denominator each time (or divide the previous term by 2 , or multiply the previous term by $\frac{1}{2}$).
3	a) Sequence $A: 2,6,18,54,162,486$ Sequence B: 2, 32, 62, 92, 122, 152 Sequence A exceeds 200 first. I know this as, after the first 4 terms, multiplying by 3 makes numbers larger more quickly than adding on 30 The numbers in Sequence A will be larger than the numbers in sequence B in positions 5, 6 or more. Other solutions are possible depending on how the students continued the sequences.
4	There are many solutions, here are 2 examples: $15,45,75,105,135$ $15,45,15,45,15$
5	a) $23,53,113,233,473,953$ b) All of the terms end in a 3
6	 a) Eva is correct as the $2^{\text {nd }}$ terms in each sequence create a sequence of their own: $1,4,7,10$ (constant difference $=3$) b) The $3^{\text {rd }}$ terms also create a sequence, this time with a difference of 9 c) The $4^{\text {th }}$ terms also create a sequence, this time with a difference of 27 The $5^{\text {th }}$ terms also create a sequence, this time with a difference of 81 The differences also create their own sequence: $3,9,27,81$. To find the next term in this sequence, multiply the previous term by 3 d) The $10^{\text {th }}$ term in each sequence will form their own sequence and will increase by $3 \times 3 \times$ $3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3=19683$ each time.
7	Lots of possible solutions, 2 examples are: 4, 0.4, 0.04, 0.004 4, 0.04, 0.0004, 0.000004

