Dora and Eva are finding missing terms in this sequence.
23, 32, $41 \ldots$

Who is correct? Explain how you know.
a) Find the next three terms of each sequence. sequence $A: 100,92,84$, \square
\square
\square sequence B: 18, 35, 52, \square
\square
\square
b) Find the 10th term of each sequence without working out the terms in between.
sequence A : \square sequence B : \square

3
a) What is the last positive term in the sequence $46,37,28 \ldots$

The last positive term in the sequence is \square
b) In which position is the first negative term?
\qquad

4 Write the missing terms in each of these linear sequences.
a) 4, 16, \square
b) 4 , \square $16 \ldots$
c) 4,

\square $16 \ldots$
d) 4 , \square
\square
\square , 16 ..
e) 97 , \square
\square 82, \square
f) 4000 \square
\square
\square 5200, \square

5 Write the missing terms in each of these non-linear sequences
a) 1, 10, 100, 1000, \square ...
b) 500,100 , \square , $4 \ldots$

Jack is incorrect.
a) Find the first integer term.

b) In which position will the first integer appear?
\qquad
c) In which position will the second integer appear?

7
The 1st term of a linear sequence is 17 The 5th term of the sequence is 29 What is the 9 th term of the sequence?

The 1st term of a sequence is 24 . The 4 th term is 192 Find the 2nd, 3rd and 5th term if the sequence is:
a) arithmetic

b) geometric

\square , 192, \square

How many different sequences of any type can you create?
a) Write three different sequences that include both 2 and 10
\qquad
\qquad
\qquad
b) Write three different sequences that include both 100 and 5
\qquad
\qquad
\qquad
c) Compare answers with a partner.

