Substitute into 2-step expressions

Substitute $y=6$ into each of these expressions.

a) $3 y+2=$| 20 | | | |
| :--- | :--- | :--- | :--- |
| y | y | y | 2 |

b) $3(y+2)=$| y | 2 |
| ---: | ---: |
| y | 2 |
| y | 2 |

c) $8+2 y=20$

d) $2(4+y)=20$

4	y
4	y

(2)

Jack is substituting $g=3$ into these expressions.

Draw a function machine for each expression to show why Jack is incorrect.

$$
\begin{aligned}
& 3 \rightarrow \times 4 \rightarrow+5 \rightarrow 17 \\
& 3 \rightarrow+5 \rightarrow \times 4 \rightarrow 32 \quad 17 \neq 32
\end{aligned}
$$

3) Evaluate the expressions when $z=6$
a) $3 z+7=25$
c)

$$
4+3 z=22
$$

$$
10 z+6.3=66 \cdot 3
$$

$$
20-2 z=8
$$

b) $3(z+7)=39$
d) $\frac{z-1}{5}=1$

$$
\begin{aligned}
& 2(z-5)=2 \\
& 10(z+5.3)=113
\end{aligned}
$$

$$
\frac{z}{3}+2=4
$$

$$
3+\frac{z}{2}=6
$$

Dora has evaluated the expression $4 x^{2}$ when $x=3$

$$
\begin{aligned}
& 4 \times 3=12 \\
& 12^{2}=144
\end{aligned}
$$

Dora has made a mistake.
a) What calculation should Dora have completed first? Correct her working out
She should hove squared the 3 first.
$3^{2}=9 \quad 4 \times 9=36$
b) What would the expression need, for the answer 144 to be correct? $(4 x)^{2}$
\qquad
c) Work out the value of these expressions when $x=5$

Substitute different values of m in to each of these expressions.

a) Explain why for any value of m, the second and third expressions will always be equal.
$5(m+1)=5 m+5$
b) Explain why for any value of m, the second expression will always be 4 more than the first
$(5 m+1)+4=5 m+5$
Use a calculator to evaluate these expressions when $k=16$ and $m=0.5$
a) $k+m=16.5$
b) $k-m=15.5$
c) $m-k=-15.5$
d) $\frac{k}{m}=32$
e) $\frac{m}{k}=\frac{1}{32}$
f) $m k=8$
g) $3 k-7 m=44.5$
h) $m(k-8)=4$
i) $m(8-k)=-4$
j) $k^{2}=256$
k) $3 k^{2}=768$
l) $(3 k)^{2}=2,304$
m) $k^{m}=4$
n) $4 k^{m}=16$
-
$5 m+1 \quad 5(m+1) \quad 5 m+5$
\qquad
\qquad

