

b)

7

7

7

d)

9

9

9

9

9

c

 \boldsymbol{c}

c

c

$$c + c + c + c + c = 5$$
 $\times c =$ \times 5

f)

d

d

d

d

$$d+d+d+d=$$

Which one of these bar models represents 4m? Tick your answer.

mmmm

What do the other bar models represent? Explain your answer.

4 + m

(4 more than m)

(m more than 4

Circle the calculations that are correct.

$$a + a = a^2$$

$$a + a = 2a$$

$$a + a = a2$$

Draw diagrams to support your answer.

 $\alpha + \alpha = 2\alpha$

a2 means the same so is equivalent but isn't the proper way of writing

(4) a) Explain why this bar model shows $2b \times 3$

2*b* 2*b* 2*b*

b) Use the bar model to complete the calculation.

 $2b \times 3 = 2b + 2b + 2b = 6b$

Complete these expressions without using an operation.

a) $3 \times g = 3 \quad g$

g)
$$k \times k =$$

h)
$$5d \times 2 =$$

c) $h \div 3 = \frac{h}{3}$

i)
$$7 \times 3a = 2$$

d) $3 \div h = \frac{3}{h}$

j)
$$4c \times 5 = 20c$$

e) $y \times 7 = 7$

k)
$$5 \times a \times a = 50^2$$

f) $j \times k = \bigcup_{i=1}^{n} k_i$

I)
$$4 \times 3 \times r = \boxed{2}$$

6 Explain what these expressions mean.

a) 2*m* ____2 × M

b)
$$\frac{m}{2}$$
 \longrightarrow 2

- c) m^2
- d) $\frac{2}{m}$ $2 \div m$
- e) gh _______
- f) $\frac{h}{g}$ $\frac{h}{g}$

Write expressions for these statements.

a) m divided by 7 $\frac{m}{7}$

d) t squared t^2

b) 3 multiplied by r

e) k divided by n

c) p multiplied by 11 p

f) p multiplied by 3 multiplied by y

8

Ron is correct. Explain why.

Multiplication is commutative

Do you agree? _____

Explain your reasoning.

Division is not commutative