Use fractions in algebraic contexts

Work out the missing numbers.

$$= 3\frac{3}{4}$$

d)
$$5 - = 4\frac{5}{6}$$

Solve the equations.

a) x + 3 = 5

c) $x-3=5\frac{1}{3}$

b) $x + 3 = 5\frac{1}{3}$

- **d)** $6\frac{1}{3} = x 3$
- If s = 2, work out the value of these expressions.

Give your answers as mixed numbers.

- a) $\frac{1}{s} + \frac{3}{s^2}$ b) $\frac{7}{s^2} \frac{2}{s}$ c) $\frac{1}{s} + \frac{1}{s} + \frac{2}{s} + 5\frac{1}{7}$
- Substitute the values g = 4 and h = 3 into the expressions. Give your answers as improper fractions.
 - a) $g + \frac{1}{g}$

$$h + \frac{1}{h}$$

What do you notice about the answers?

b) $1 + \frac{g}{h}$

 $1 + \frac{h}{\sigma}$

Which answer was greater? Will this be true for any values of g and h?

c) $g - \frac{g}{h}$

No values of g and h will ever give a negative answer.

Do you agree with Dexter?

Talk about it with a partner.

- a) Write the next four terms of the sequence.
- b) How many of the terms in part a) are whole numbers?
- c) Which term will produce $5\frac{2}{3}$?
- d) How many terms out of the first 100 terms will be integers?
- e) How often will the sequence $\frac{2n}{2}$ produce integers? Show your working.
- f) How often will the sequence $\frac{3n}{n}$ produce integers? Show your working.

a) $x + \frac{2}{3} - \frac{5}{6} = 0$

c) $\frac{16}{7} - \frac{12}{56} = x + 2\frac{1}{2}$

b) $\frac{5}{2} = x + \frac{1}{5}$

d) $\frac{300}{7} + x - \frac{1}{3} = \frac{586}{14} + \frac{4}{6}$

