Add and subtract unit fractions with the same denominator

a) Which are unit fractions?

1/2

<u>2</u> 3 4/1

10

<u>2</u> 8

b) Write three more unit fractions.

c) Describe, in your own words, what is meant by a unit fraction.

Use the bar models to help you with the calculations.

a) $\frac{1}{3} + \frac{1}{3}$

b) $\frac{1}{4} + \frac{1}{4} + \frac{1}{4}$

c) $\frac{1}{5} + \frac{1}{5} + \frac{1}{5}$

d) $\frac{1}{5} + \frac{1}{5} - \frac{1}{5}$

Use the number lines to help you with the calculations.

a)
$$\frac{1}{3} + \frac{1}{3} =$$

b)
$$\frac{1}{6} + \frac{1}{6} + \frac{1}{6}$$

c) $\frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12}$

4

Write the fractions as sums of unit fractions.

d)
$$\frac{3}{14} =$$

f)
$$\frac{7}{14} =$$

5

 $\frac{1}{2}$ cannot be written as the sum of unit fractions because it is already a unit fraction.

Is Dexter correct?

Explain your reasoning.

Fill in the missing denominators and show the calculations on the number lines.

a)
$$\frac{1}{1} + \frac{1}{1} = \frac{2}{4}$$

b)
$$\frac{1}{1} - \frac{1}{1} = \frac{0}{7}$$

Add and subtract unit fractions with the same denominator

d)
$$\frac{3}{14} =$$

e)
$$\frac{4}{14}$$
 = _____

c)
$$\frac{3}{7} = \boxed{ + }$$

f)
$$\frac{7}{14} =$$

 $\frac{1}{2}$ cannot be written as the sum of unit fractions because it is already a unit fraction.

Is Dexter correct?

Explain your reasoning.

Fill in the missing denominators and show the calculations on the number lines.

a)
$$\frac{1}{1} + \frac{1}{1} = \frac{2}{4}$$

b)
$$\frac{1}{1} - \frac{1}{1} = \frac{0}{7}$$

c)
$$\frac{3}{5} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} - \frac{1}{1}$$

d)
$$\frac{5}{5} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1}$$

What do you notice about part d)? Discuss with a partner.

a)
$$\frac{3}{5} = \frac{1}{5} + \frac{1}{5}$$

a)
$$\frac{3}{5} = \frac{1}{5} + \frac{1}{5}$$
 c) $\frac{9}{9} = \frac{1}{9} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9} = \frac{1}{9} = \frac{1}{9} + \frac{1}{9} = \frac{1}{9}$

b)
$$\frac{2}{5} = \frac{1}{5} + \frac{1}{5} + \frac{1}{5}$$
 d) $\frac{0}{6} = \frac{1}{6} + \frac{1}{6}$

d)
$$\frac{0}{6} = \frac{1}{6} + \frac{1}{6}$$

Use the bar models to help.

You need to add $\frac{1}{4}$ times to make a whole.

b)
$$\frac{}{6} = \frac{1}{6} +$$

You need to add $\frac{1}{6}$ times to make a whole.

You need to add $\frac{1}{2}$ times to make a whole.

Why is it not suitable to draw a bar model for part c)?

