Find and use multiples

Write the first six multiples of each number.
a) 8

b) 15
\square
c) 79

2 Here are some number cards.

Use the cards to give five multiples of each number.
a) 4
b) 5
c) 2.5

What do you notice about your answers to parts b) and c)?

3 Nijah is listing the multiples of a number.
The numbers 12 and 36 are in her list.

Do you agree with Tommy? \qquad
Explain your answer

Teddy is working out the smallest multiple of 9 that is greater than 500

Do you agree with Teddy? \qquad
Explain your answer.
\qquad

5 Are the statements true or false?
a) 55.5 is a multiple of 5
b) 5 is a multiple of 10
c) 49 is a multiple of 3.5
d) 45 is 3 more than a multiple of 6
e) 11,211 is a multiple of 3

Discuss with a partner how you decided.

6 A number 58 bus leaves the station every 12 minutes between 9 am and 5 pm

How many number 58 buses leave the station in a day?

Jack and Kim complete a test.

- The highest possible score is 80 marks.
- Jack's score is a multiple of 9
- Kim's score is a multiple of 7
- Kim scored 16 fewer marks than Jack.

How many marks did Jack score out of 80?
\square

The 6-digit number 23,456_ is a multiple of 3

What is the missing digit?
Discuss your method with a partner
Is there more than one solution?
9) Alex is thinking of a number.

- The number is greater than 10 , but less than 20
- She knows her number is not a multiple of 2
- If she multiplies her number by 8 , she will get a multiple of 12

What number is Alex thinking of?

10
x is a positive integer.
a) What value of x would make the expression $3 x+9$ a multiple of 7 ?
b) What value of x would make the expression $3 x+9$ a multiple of both 4 and 6 ?
c) What value of x would make the expression $3 x+9$ a multiple of 5 , but not a multiple of 10 ?

Is there more than one solution for each part?
11) y is a positive integer.
a) State whether the expressions are always, sometimes or never a multiple of 3
\square $6 y+1$
$5 y+6$
$6 y-6$
\qquad
\qquad
\qquad
\qquad
$y \div 3$
$y-3$
$6-y$
$6 y-3$
b) For any expressions that are sometimes a multiple of 3 , give a value of y to support your answer.
\square
\square

