Recognise square and triangular numbers

(1)

The pattern shows the first three square numbers.

a) What are the first three square numbers?

b) Draw the 4 th and 5 th square numbers.
c) What are the 4th and 5th square numbers?

d) List the first ten square numbers.

Alex uses counters to make a square

Do you agree with Alex? \qquad
Explain your answer.
(3)

The pattern shows the first four triangular numbers.

a) What are the first four triangular numbers?

b) Draw the 5th triangular number.
c) What is the 5th triangular number? \square
d) List the first ten triangular numbers.
e) Explain to a partner how the pattern of triangular numbers is formed.Match the sequences to the descriptions.
$1,4,9,16 \ldots$
triangular numbers
$1,3,6,10 \ldots$
prime numbers

```
2,3,5,7 ...
```

(5)

Work out the values.
a) 1

e) 15^{2} \square
b) 1 \square f) 1.5^{2} \square
c)

g) 150^{2}

d) \square h) 0.15^{2} \square

Explain why Whitney is incorrect.
\qquad

7
Is it possible for a number to be both square and prime? \qquad

Explain your answer.
(8)

Use the clues to find four consecutive numbers that fit in the boxes.
a)

b)

Give two examples to show that Mo is incorrect.
\qquad

Filip and Dani are investigating square numbers.
They have found that 25 is a square number and can be written as the sum of two square numbers.

$$
9+16=25 \quad \text { or } \quad 3^{2}+4^{2}=5^{2}
$$

Find two more examples of square numbers that can be written as the sum of two square numbers.

Compare answers with a partner.
surnosar

