Write a number as a product of its prime factors
a) Complete the factor trees for the number 24

b) What is 24 , as a product of its prime factors?

c) Discuss with a partner what you notice about your factor trees in part a).
(3)

Complete a factor tree for each number. Write each number as a product of its prime factors.
a)
80
b)
68

$$
80=
$$

\qquad $68=$ \qquada) What number could replace the question mark in the factor tree?

b) Discuss your answer with a partner.

Is there more than one solution?
c) Write 72 as a product of its prime factors.

Write the numbers as products of their prime factors.
a) $9=$ \qquad
$18=$ \qquad
$36=$ \qquad
$81=$ \qquad
b) $8=$ \qquad
$32=$ \qquad
$64=$ \qquad
$128=$ \qquad

What do you notice about your answers?

Four numbers have been written on cards as the product of their prime factors.

The greatest number is the second card, as that has the most prime factors.
a) Do you agree with Whitney? \qquad
Explain your answer.
\qquad
b) Write the numbers in ascending order.
(7)

Dani works out 450 $=2 \times 3 \times 3 \times 5 \times 5$
Use this information to write these numbers as a product of their prime factors.
$900=$ \qquad
$225=$ \qquad
$4,500=$ \qquad $150=$ \qquad

8 A number has been written as the product of its prime factors.
The answer is $2^{2} \times 3 \times 11^{2}$
Is 66 a factor of this number?
Explain how you know.
(a)

f and g are prime numbers.
$5 f g=275 \quad$ and $\quad g>f$

What is the value of g ?
b)
$192=2^{a} b$
a and b are prime numbers.
Find the values of a and b.
c)

495 can be written as $c^{2} d e$.
What are the values of c, d and e ?

10

How many times greater is B than A ?
Explain how you know.

$192=2^{a} b$
a and b are prime numbers.


```
\[
A=5^{2} \times 7^{2} \times 11^{3} \times 13
\]
```

$$
B=5^{2} \times 7^{3} \times 11^{3} \times 13
$$

0
\qquad

