

Subject Mathematics			
Title/Topic	Format	Length	Date
Paper 1 – Pure	Written Exam	2 hours	Friday 6 January 9.15am – 11.15am
Paper 2 – Pure	Written Exam	2 hours	Wednesday 11 January 12.40 – 2.40pm
Paper 3 – Mechanics & Statistics	Written Exam	2 hours	Friday 13 January 9.15am – 11.15am

My Advent assessment will test my knowledge on...

Pure Content

The below information outlines which pure content could be tested across paper 1 & paper 2.

Proof

Proof by contradiction

Algebra & Functions

Transformations with functions
Factor theorem
Functions with modelling
Understand & use graphs of functions
Interpret algebraic solutions of equations
graphically
Sketch & solve modulus equations
Graphs of functions
Sketch & solve exponential graphs
Partial fractions
Use of discriminant

Co-ordinate Geometry

Equations of a circle
Equation of a tangent
Equation of a perpendicular
Distance between two points

Sequences & Series

Binomial expansion Sequences Geometric series Sum to infinity

Trigonometry

Trigonometrical equations using compound angles
Trigonometrical modelling, proof and equations
Trigonometrical identities

Exponentials & Logarithms

Modelling with logarithms
Using & evaluating logarithms
Plot logarithmic graphs

Differentiation

Applications of maxima and minima
Differentiation from first principles
Parametric differentiation
Differentiating quotient rule
Differentiating a trigonometrical function

Integration

Indefinite integration
Parametric integration
Definite integration
Graphs and integration

Numerical Methods

Locating roots

Statistics Content

Statistical Sampling

Sampling methods

Data Presentation & Interpretation

Standard deviation & mean

Using histograms

Using scatter diagrams

Outliers

Probability

Probability from a table

Probability from Venn diagrams

Dependent probability

Statistical Distributions

Binomial probabilities

Hypothesis Testing

Hypothesis test

Mechanics Content

Kinematics

Derive SUVAT equations

Constant acceleration

Variable acceleration, velocity & distance

Velocity time graphs

Kinematics

Forces & Newtons Laws

Find resultant forces

F = ma

Use of pulleys

Motion under gravity

What should I do to revise and prepare for this assessment?

To prepare for this assessment:

- 1. Attempt the practice paper provided to you
- 2. Review your classwork from this term
- 3. Complete and re-attempt the unit tests from integral.
- 4. Practice questions from your text book.
- 5. Review your class-based topic assessments completed so far this term.

What useful websites/resources could I use to help me prepare?

https://integralmaths.org/

https://www.khanacademy.org/math

https://www.whitegroupmaths.com/

http://www.mathcentre.ac.uk/