
De Lisle – A Level Computer Science

Summer Transition Work

Task 1 – Web Development

Create a single webpage about a topic of the GCSE Computer Science course. You can choose any of

the following topics-

• CPU, Memory and Storage

• Networks

• Binary Numbers and Hexadecimal

• Images and Sound

Your webpage needs to include-

• Main heading and subheadings

• Information about the topic

o Keywords and definitions

o Explanation of the topic

o Relevant images or diagrams

• Links to other pages or websites (Bitesize, YouTube etc)

Here is an example (it still needs some work on the colour scheme and styling)

Link - index.html - CS Webpage - Replit

How to get started-

1. Create a new HTML, CSS, Javascript project in Repl

2. Edit the index.html page to include the contents of your page

3. Use w3schools to learn how to edit the way it looks and the layout HTML Tutorial

(w3schools.com) This website will show you examples of loads of different HTML tags that

you can use to create your webpage.

4. Link to my example page - index.html - CS Webpage - Replit

https://replit.com/@mrmjackson/CS-Webpage#index.html
https://www.w3schools.com/html/default.asp
https://www.w3schools.com/html/default.asp
https://replit.com/@mrmjackson/CS-Webpage#index.html

De Lisle – A Level Computer Science

Task 2 – Python Challenges

Most of our programming work will be completed using Python, therefore it is vital that you

programming skills are kept fresh.

Select and complete some of these challenges. Choose ones that are appropriate-

Shorter Challenges

Mathematical Operators
Challenge 1: Arithmetic Calculator
Write a program that acts as a basic arithmetic calculator. The program should take two numbers as
input from the user and perform the four basic mathematical operations (addition, subtraction,
multiplication, and division). The program should then display the results to the user.
[Add a screenshot of your code here]

Challenge 2: Temperature Converter
Create a program that converts temperatures between Celsius and Fahrenheit. The program should
ask the user to input a temperature in either Celsius or Fahrenheit and then convert it to the other
unit. Use the following formulas for conversion:
- Celsius to Fahrenheit: F = (C * 9/5) + 32
- Fahrenheit to Celsius: C = (F - 32) * 5/9
[Add a screenshot of your code here]

Challenge 3: Quadratic Equation Solver
Write a program that solves a quadratic equation. The program should prompt the user to enter the
coefficients (a, b, and c) of the quadratic equation in the form of ax^2 + bx + c = 0. The program
should then calculate and display the roots of the equation, handling both real and complex roots.
You can use the quadratic formula to solve the equation:
- x = (-b ± √(b^2 - 4ac)) / (2a)
[Add a screenshot of your code here]

Lists
Challenge 1: Student Grades Analysis

Write a program that takes input from the user in the form of a list of student grades (ranging from 0
to 100) and performs the following tasks:

1. Calculate and output the average grade of the students.
2. Determine and output the highest and lowest grades in the list.
3. Count and output the number of students who passed (grades 40 or above) and failed (grades
below 40).

Example:
Input: [75, 80, 65, 55, 90, 40, 30]
Output:
Average grade: 61.43
Highest grade: 90

De Lisle – A Level Computer Science

Lowest grade: 30
Number of students who passed: 4
Number of students who failed: 3
[Add a screenshot of your code here]

Challenge 2: Shopping List

Write a program that allows the user to create a shopping list. The program should perform the
following tasks:

1. Ask the user to enter the items they want to buy, one item at a time. The user can enter "done"
when they finish.
2. Store the items in a list.
3. Output the complete shopping list.

Example:
Enter an item (enter "done" when finished): Apples
Enter an item (enter "done" when finished): Bread
Enter an item (enter "done" when finished): Milk
Enter an item (enter "done" when finished): done

Shopping List:
- Apples
- Bread
- Milk
[Add a screenshot of your code here]

Challenge 3: Number Sorting

Write a program that takes a list of numbers as input from the user and performs the following
tasks:

1. Output the original list of numbers.
2. Sort the list in ascending order.
3. Output the sorted list.

Example:
Enter a number (enter "done" when finished): 7
Enter a number (enter "done" when finished): 3
Enter a number (enter "done" when finished): 10
Enter a number (enter "done" when finished): done

Original list: [7, 3, 10]
Sorted list: [3, 7, 10]

Note: To handle the user input in the challenges, you can use a while loop that prompts the user for
input until a specific condition (e.g., entering "done") is met.
[Add a screenshot of your code here]

2D Lists (Harder challenges)
Use 2D lists in your solutions to these problems

De Lisle – A Level Computer Science

Challenge 1: Matrix Transposition
Write a program that takes a 2D array as input and transposes it, swapping the rows and columns.
The program should prompt the user to enter the dimensions of the matrix and its elements. The
transposed matrix should then be printed as output.
 [Add a screenshot of your code here]

Challenge 2: Spiral Matrix
Create a program that generates a spiral matrix of size N x N. The program should prompt the user
to enter the value of N and then construct the spiral matrix. The elements of the matrix should be
filled in a clockwise spiral pattern, starting from the top-left corner and moving towards the center.
Finally, print the generated matrix.
[Add a screenshot of your code here]

Challenge 3: Tic-Tac-Toe Game Board
Design a program that simulates a Tic-Tac-Toe game board using a 2D array. The program should
provide a user interface where two players can take turns entering their moves. The board should be
displayed after each move, and the program should check for a winning condition (three in a row,
column, or diagonal) or a draw. The game should continue until a player wins or the game ends in a
draw.
 [Add a screenshot of your code here]

String Manipulation
Challenge 1: Palindrome Checker
Write a program that checks whether a given word or phrase is a palindrome or not. A palindrome is
a word, phrase, number, or other sequence of characters that reads the same forward and
backward. The program should ignore spaces and punctuation marks while checking for
palindromes.
[Add a screenshot of your code here]

Challenge 2: String Reversal

Create a program that takes a string as input and reverses it. Implement the reversal logic without
using any built-in string reversal functions or methods.
[Add a screenshot of your code here]

Challenge 3: Word Count
Write a program that counts the number of words in a given sentence or paragraph. Consider a word
as any sequence of characters separated by whitespace. Punctuation marks should be excluded from
the word count.
[Add a screenshot of your code here]

MOD and DIV
Use MOD (%) and DIV (//) in your attempts to create solutions to these problems
Challenge 1: Leap Year Checker
Write a program that prompts the user to enter a year and determines whether it is a leap year or
not. A leap year is divisible by 4 but not divisible by 100, except for years that are divisible by 400.
[Add a screenshot of your code here]

Challenge 2: Palindrome Number Checker

De Lisle – A Level Computer Science

Write a program that prompts the user to enter a number and determines whether it is a
palindrome or not. A palindrome number is the same when read forward and backward. For
example, 121 and 555 are palindromes.
[Add a screenshot of your code here]

Challenge 3: Factor Checker
Write a program that prompts the user to enter two numbers, A and B. Determine whether A is a
factor of B or not. A is considered a factor of B if B MOD A is equal to 0.
[Add a screenshot of your code here]

Functions with Parameters
Solve these problems by creating new functions that take in parameters
Challenge 1: Calculate Area of a Rectangle
Write a function named `calculate_rectangle_area` that takes two parameters, `length` and `width`,
and calculates the area of a rectangle. The function should return the calculated area.
[Add a screenshot of your code here]

Challenge 2: Find the Maximum Number
Write a function named `find_maximum` that takes three parameters, `num1`, `num2`, and `num3`,
and finds and returns the maximum of the three numbers.
[Add a screenshot of your code here]

Challenge 3: Generate a Fibonacci Sequence
Write a function named `generate_fibonacci_sequence` that takes a parameter `n` and generates
and returns the first `n` numbers in the Fibonacci sequence as a list. The Fibonacci sequence starts
with 0 and 1, and each subsequent number is the sum of the two preceding numbers.
[Add a screenshot of your code here]

Larger Game Challenges

1. Text Adventure Game:

Create a text-based adventure game where players navigate through different scenarios by making

choices. Each choice leads to different outcomes, and players can progress through the game by

collecting items, solving puzzles, and interacting with characters. This game will require students to

work with conditional statements, user input, and variable manipulation.

2. Word Guessing Game:

Develop a word guessing game where the computer selects a random word from a predefined list,

and the player has to guess the word by entering letters one at a time. The computer provides

feedback on whether the guessed letters are correct and reveals the positions of correctly guessed

letters. Students will need to work with arrays, loops, string manipulation, and conditionals to create

this game.

3. Quiz Game:

De Lisle – A Level Computer Science

Design a quiz game where players are presented with a series of questions and given multiple-choice

options. The player selects an answer, and the program provides feedback on whether it's correct or

not. The game keeps track of the player's score and displays it at the end. Students will need to work

with arrays, loops, user input, conditionals, and scoring logic to implement this game.

4. Hangman:

Description: Implement the classic game of Hangman where the player guesses letters to reveal a

hidden word. The player has a limited number of attempts before the game ends.

Skills Developed: Strings, lists, loops (while or for), conditional statements, user input, and functions.

