A Level Further Maths Transition Work Summer 2023

Teacher: Miss Jevons

Email: hannah.jevons@delisle.leics.sch.uk

Current specification: OCR Further Mathematics B (MEI)

- Pure Core (50%)
- Statistics Minor (16¾%)
- Mechanics Minor (16\%%)
- Modelling with Algorithms (16¾%)

Exam structure

- Pure Core 2hrs 40mins
- Statistics Minor 1hr 15mins
- Mechanics Minor 1hr 15mins
- Modelling with Algorithms 1hr 15mins

Section A: Pure Maths

Sequences

Write the nth term rule for the following sequences:

- a) 51, 54, 59, 66, 75, ...
- b) 3, 12, 27, 48, 75, ...
- c) 2.5, 4, 6.5, 10, 14.5, ...
- d) -6, -1, 6, 15, 26, ...
- e) 6, 13, 24, 39, 58, ...

Simultaneous Equations

Solve the simultaneous equations:

$$a+b-c=2$$
$$a-b+c=0$$

$$-a+b+c=8.$$

Now solve the simultaneous equations:

$$ka + b - c = 2$$

$$a - b + c = 0$$

$$-a+b+c=8.$$

where k is a fixed but unknown number. Are there any values of k for which the equations have no solution?

Algebraic Fractions

Question 1: Fully simplify the following:

а

$$x^2 + 5x + 4$$

 $x^2 + 4x + 3$

b

$$x^2 + 6x + 9$$

 $x^2 - 2x - 15$

С

$$\frac{x^2 + 11x}{x^2 - 121}$$

d

$$\frac{x^2 - 1}{x^2 + x}$$

e

$$\frac{10x^2 - 23x + 12}{4x^2 + 4x - 15}$$

f

$$20x^2 + 21x + 4$$

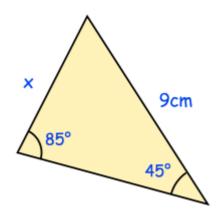
Question 2

(i) Solve the equation:

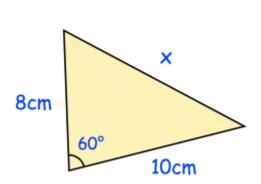
$$\frac{2}{x+3} + \frac{1}{x+1} = 1.$$

(ii) Find the value(s) of b for which the following equation has a single (repeated) root.

$$9x^2 + bx + 4 = 0.$$

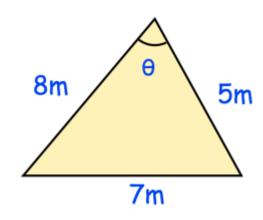

(iii) Find the range of (real) values of c for which the following equation has no real roots:

$$3x^2 + 5cx + c = 0.$$

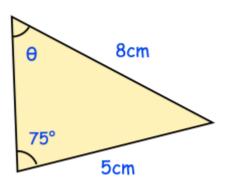

Trigonometry

Calculate the missing side x.

a)

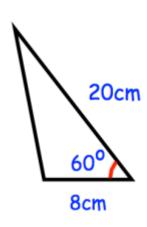


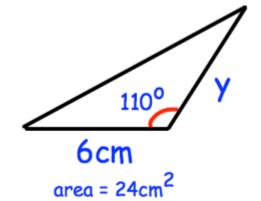
b)



Calculate the missing angle heta

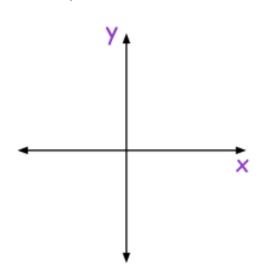
c)

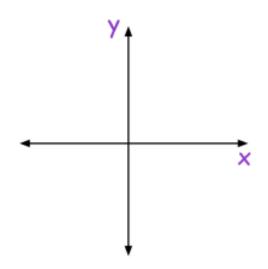



d)

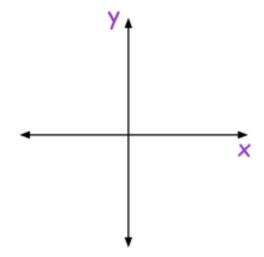
e) Calculate the area of the triangle

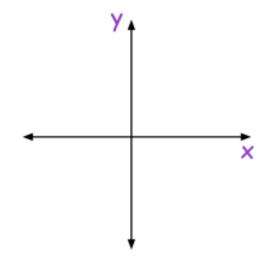
f) Calculate y




Graph Sketching

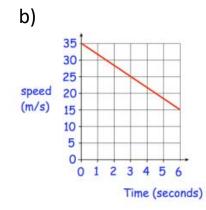
- Sketch the following graphs
- label any points of intersection with the axes
- Label the turning point

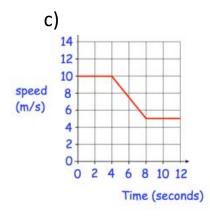

a)
$$y = x^2 - 7x + 10$$


b)
$$y = x^2 - 2x + 1$$

c)
$$y = x^2 + 4x + 10$$

d)
$$y = -x^2 - 5x - 4$$

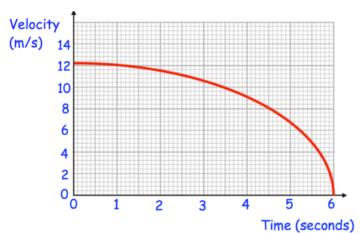

Section B: Mechanics

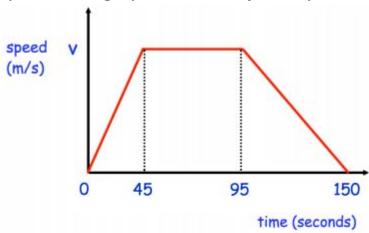

1. Shown below are speed-time graphs for some journeys. For each journey, calculate the total distance travelled.

a)

14
12
10
speed 8
(m/s) 6
4
2

5 10 15 20 25 30




2. Here is a velocity time graph

Time (seconds)

- (a) Work out an estimate for the distance travelled over 6 seconds. Use 3 strips of equal width.
- (b) Is your answer to (a) an overestimate or an underestimate of the actual distance travelled?

3. Here is a speed-time graph for a train journey

The journey took 150 seconds.

The train travelled 1.53km in the 150 seconds.

Work out the value of v.

Section C: Statistics

Calculate the following:

- a) Estimated mean
- b) Median class
- c) Modal class

Lifetime (months)	Frequency
0 < t ≤ 12	1
12 < † ≤ 24	9
24 < † ≤ 36	13
36 < † ≤ 48	56
48 < † ≤ 60	21

Time taken	Frequency
0 < t ≤ 5	5
5 < † <u>≤</u> 10	14
10 < † ≤ 15	10
15 < † ≤ 20	1

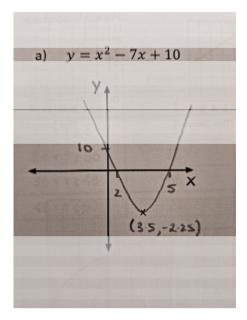
Answers

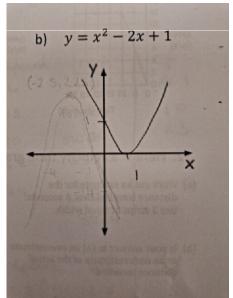
Sequences

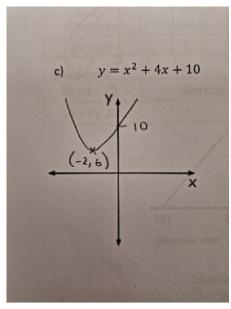
- a) $n^2 + 50$
- b) 3n²
- c) $0.5n^2 + 2$
- d) $n^2 + 2n 9$
- e) $2n^2 + n + 3$

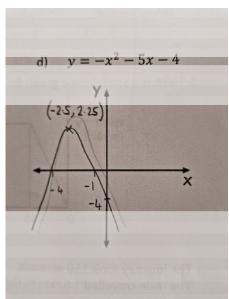
Simultaneous Equations

- a) a = 1, b = 5, c = 4
- b) no solution if k = -1


Algebraic Fractions


- a) $\frac{x+4}{x+3}$
- b) $\frac{x+3}{x-5}$
- c) $\frac{x}{x-11}$
- d) $\frac{x-1}{x}$
- e) $\frac{5x-4}{2x+5}$
- f) $\frac{5x+4}{4x-1}$
- a) x = -2 or x = 1
- b) b = 12 or b = -12
- c) $0 < c < \frac{12}{25}$


Trigonometry


- a) x = 6.39 cm (3sf)
- b) x = 5.04cm (3sf)
- c) $\Theta = 60^{\circ}$
- d) $\Theta = 37.1^{\circ} (1dp)$
- e) Area = $69.3 \text{ cm}^2 (3\text{sf})$
- f) y = 8.51 cm (3sf)

Graph Sketching

Statistics

Mechanics

3)
$$v = 15.3 \text{m/s}$$