

Subject	Computer Science	
Title/Topic	Format	Length
Paper 1	Written	1.5 Hrs
Paper 2	Written	1.5 Hrs

In this Advent assessment I will be asked to show I can...

PAPER 1: COMPUTER SYSTEMS

1. Data Representation

- Analogue vs digital data
- Sound sampling:
 - Sampling
 - Sample rate (Hz)
 - Bit depth
 - Relationship between bit depth and accuracy
- Bitmap images:
 - Pixel definition
 - Image resolution
 - Colour depth
 - File size calculations
- Calculating minimum bits needed to represent a given number of values
- Units of data storage (bits, bytes, KB, MB, GB, TB)
- Converting between storage units

2. Secondary Storage

- Types of secondary storage:
 - Optical storage
 - Solid-state storage
- Characteristics:
 - Capacity
 - Portability
 - Speed
 - Durability
- Justifying storage choices for given uses

3. Operating Systems & Utility Software

- Operating system functions:
 - Memory management
 - File management
 - Peripheral management
 - User management
 - Multitasking
- Utility software:
 - Purpose of utility software
 - Encryption:
 - Purpose

- How it protects data
- Impact on security

4. Ethical, Environmental & Legal Issues

- Ethical implications of technology decisions
- Environmental impacts:
 - E-waste
 - Device lifespan
 - Sustainability
- Balancing benefits and drawbacks for users and organisations

5. Networks

- LAN vs WAN characteristics
- Network topologies:
 - Mesh
 - Star
- Advantages and disadvantages of different topologies
- Wired vs wireless networking:
 - Performance implications
 - Practical benefits
- Factors affecting network performance:
 - Bandwidth
 - Number of concurrent users
- Cloud storage:
 - Drawbacks and risks
- Hardware needed to connect a LAN to the internet
- IPv4 addressing:
 - Valid vs invalid addresses
- DNS process:
 - Converting URLs to IP addresses
- Data protection legislation:
 - Identifying relevant legislation
 - Organisational responsibilities

6. Number Systems

- Binary, denary and hexadecimal
- Converting between:
 - Denary \leftrightarrow binary
 - Binary \leftrightarrow hexadecimal
- Binary arithmetic:
 - Binary addition
 - Binary shifts:
 - Left shifts
 - Right shifts
 - Effect on numerical value

7. Character Sets & CPU Architecture

- ASCII:
 - Character to binary encoding
- Unicode:
 - Benefits
 - Drawbacks
- CPU registers:
 - Identifying different registers
 - Purpose of each register

PAPER 2: COMPUTATIONAL THINKING, ALGORITHMS & PROGRAMMING

1. Computational Thinking

- Decomposition
- Abstraction
- Algorithmic thinking
- Matching techniques to examples

2. Algorithms & Logic

- Writing algorithms using:
 - Selection
 - Iteration
 - Input and output
- Boolean logic:
 - AND
 - OR
 - NOT
- Boolean operators in conditions
- Logic circuits:
 - Drawing circuits
 - Completing truth tables

3. Testing

- Types of test data:
 - Normal
 - Boundary
 - Invalid / erroneous
- Selecting appropriate test data

4. Programming Constructs

- Selection (IF statements)
- Iteration:
 - Count-controlled loops
 - Condition-controlled loops
- Identifying constructs used in algorithms

5. Flowcharts & Tracing

- Interpreting flowcharts
- Tracing variable values
- Determining output from repeated execution

6. IDEs & Program Development

- Integrated Development Environments:
 - Tools provided by an IDE
 - Purpose of each tool (e.g. debugging, editing, error checking)

7. Sorting & Searching Algorithms

- Sorting algorithms:
 - Bubble sort
 - Insertion sort
 - Merge sort
- Understanding how each algorithm works
- Linear search:
 - How it operates
 - Stopping conditions
- Arrays:
 - Characteristics
 - Fixed size
 - Indexed access

8. File Handling

- Reading from external text files
- Looping through file contents
- Outputting filtered data
- Casting between data types

9. Programming with Data

- Variables and identifiers
- Data types
- Arrays:
 - Indexing
 - Iteration through arrays
- Tracing array-based algorithms
- Refining algorithms when data structures change

10. Writing Algorithms & Code

- Writing algorithms using OCR Exam Reference Language or a high-level language
- String handling:
 - Length checking
 - Equality comparison
- Functions:

- Parameters
- Return values
- Using functions within algorithms
- Repetition until a condition is met

11. Databases & SQL

- Database concepts:
 - Tables
 - Records
 - Fields
- Writing SQL queries:
 - SELECT
 - FROM
 - WHERE
- Choosing appropriate data types for fields

What should I do to revise and prepare for this examination?

To prepare for this assessment:

Complete the revision activities/booklets given out in class and set for homework.

Complete the weekly revision quizzes for homework.

What useful websites/resources could I use to help me prepare?

GCSE Pod

YouTube - CraignDave